一、初一数学下册动点题?
数轴上的动点问题,是七年级非常重要的问题,也是困难题,学生遇上了它就一个字——“晕”.但这个知识点又不得不学,因为这个知识比较综合,也比较抽象,是一类极为常见且重要的综合题,对学生的综合运用知识能力要求较高,涉及到“绝对值的几何意义、数在数轴上的表示、行程问题”等,更是学习“数形结合”思想的第一步.动点问题
二、2008年初一数学下册和2021初一数学下册的区别?
这得分地区,大部分省用的人民教育出版社,也就是人教版,有一部分省用的是苏教版
三、初一下册数学(青岛版)知识点?
第九章:角
27、角的定义:由有公共端点的两条射线组成的图形。
28、余角和补角的性质:⑴同角(或等角)的余角相等
⑵同角(或等角)的补角相等
29、象限角:是指以观测者所在的南北方向和东西方向将水平面分为北偏东、北偏西、南偏西、南偏东四个象限内的角
30、对顶角:两个角有公共定点,其中一个角的两边分别是另一个角的两边的反向延长线。对顶角相等。
31、垂线的性质与点到直线的距离:
⑴经过一点能且只能画一条直线与已知直线垂直
⑵连接直线外一点与直线上各点的所有线段中,垂线段最短。
⑶从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
32、几个概念;
⑴同位角:两条直线被第三条直线所截,位置相同的两个角
⑵内错角:两条直线被第三条直线所截,两个角都在两直线之间,并且位置交错的两个角。
⑶同旁内角:两条直线被第三条直线所截,两个角都在两直线之间,并且在第三条直线的同旁的两个角。
33、平行线:
⑴平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
⑵推论:两条直线都和第三条直线平行,则两直线平行
⑶平行线性质
①两直线平行,同位角相等
②两直线平行,内错角相等
③两直线平行,同旁内角互补
⑷平行线判定:
①公理:同位角相等,两直线平行
②内错角相等,两直线平行
③同旁内角互补,两直线平行
⑸平行线的传递性:平行于同一条直线的两条直线相互平行。
⑹两条平行线间的距离:其中一条直线上每个点到另一条直线的距离都相等,这个距离叫两平行线间的距离。
第十一章:图形与坐标
34、数轴上的点的坐标:数轴上的点与实数是一一对应的,从而用一个实数来确定一个点在数轴上的位置,这个实数叫点的坐标
35、平面直角坐标系:
⑴在平面内两条相互垂直的并且与原点重合的数轴构成平面直角坐标系。横向的叫x轴,纵向的叫y轴。
⑵平面坐标系的点与一对有序实数一一对应,这一对有序实数称为该点的坐标。
36、P(a,b)的对称点:
⑴P点关于x轴的对称点为(a ,-b)
⑵P点关于y轴的对称点为(-a , b)
⑶P点关于原点的对称点为(-a ,-b)
37、平面直角坐标系中的图形(略)
38、函数和图像:求函数中自变量的取值范围一般可分两种情况
⑴函数由一个解析式给出,其自变量的取值范围要使函数有意义
①用整式表示的函数 ,自变量的取值范围是全体实数
②用分式表示的函数,自变量的取值范围是使分母的值不为零的实数
③偶次方根表示的函数,自变量的取值范围是“被开方数≥0”的实数
⑵对于有实际意义的函数,自变量的取值范围要根据实际意义来确定
39、由函数解析式画图象的步骤:
⑴列表 ⑵描点 ⑶连线
40、一次函数
⑴一次函数的定义:一般地,如果y=kx+b(k≠0,k,b是常数),那么y叫x的一次函数。当b等于零时y叫x的正比例函数
⑵y=kx(k≠0)的图象是一条经过原点的直线
画正比例函数的图象取(0,0)与(1,k)点
当k>0时, y随x的增大而增大
当k<0时, y随x的增大而减小
⑶y=kx+b(k≠0) 的图象也是一条直线,画一次函数的图象时取(0,b),(-b/k,0)两点
当k>0时, y随x的增大而增大
当k<0时, y随x的增大而减小
⑷y=kx+b(k≠0)可以看作是y=kx(k≠0)向上或向下平移得到的,由此得出y=kx+b经过的象限情况:
①k>0, b>0 图象经过一,三,二象限
②k>0,b<0 图象经过一,三,四象限
③k<0 b>0 图象经过一,二,四象限
④k<0,b<0 图象经过二,三,四象限
提示:一通常把一次函数y=kx+b的图象叫做直线y=kx+b
二一次函数y=kx+b的性质类似正比例函数那样
⑸若y=kx+b(k≠0),则该函数的图像关于x轴对称的直线的解析式为y=-kx-b(k≠0);关于y轴对称的直线的解析式为y=-kx+b(k≠0)
⑹一次函数解析式的求法:待定系数法
⑺对于两直线:L1:y=k1x+b1和L2:y=k2x+b2
若 k1≠k2 两直线相交
若k1=k2 b1≠b2 则两直线平行
若k1=k2 b1=b2 则两直线重合
若k1k2= -1则两直线垂直
41、一次函数图象的平移(口诀:上加下减;左加右减)
⑴沿y轴方向平移:函数 y = kx + b 的图象可以看做是 y = kx 平移|b|个单位得到的,当b>0时,图象沿y轴向上平移;当b<0时,图象沿y轴向下平移。
⑵沿x轴方向平移:函数 y = kx + b沿x轴方向平移n个单位,向左平移,函数关系式变为y = k(x+n) + b
向右平移,函数关系式变为y = k(x-n)+ b
第十二章:两元一次方程组
42、定义:
⑴含有两个未知数,且未知项的次数都是1的方程叫两元一次方程
⑵由两个一次方程组成,并且含有两个未知数的方程组叫两元一次方程组。
43、两元一次方程组的解法:⑴代入法;⑵加减法
44、两元一次方程组与一次函数的关系:
⑴两元一次方程组的解,可以看作是对应的两个一次函数的图像的交点坐标
⑵两个一次函数图像的交点坐标,可以看作是对应的两元一次方程组的解。
⑶若两元一次方程组有解,则对应的两个一次函数有交点;反之亦然。
⑷若两元一次方程组无解,则对应的两个一次函数无交点,即两直线平行。
45、列方程解应用题:⑴和、差、倍、分问题,⑵销售量、利润问题,⑶增长(减少)率问题,⑷数字问题,⑸行程问题和工程问题
第十三章:走进概率
46、事件发生的可能性大小往往是由发生事件的条件决定的,可以通过比较各事件的条件及其对事件发生的影响来比较事件发生的可能性的大小。
⑴必然事件:一定会发生的事件
⑵不可能事件:一定不会发生的事件
⑶随机事件:可能发生也可能不发生的事件,又叫不确定事件。
47、概率:
⑴定义:一个事件发生的可能性的大小可以用一个数来表示,我们把这个数叫这个事件发生的概率
⑵概率的计算公式:P(E)=事件E可能发生结果数÷所有等可能结果总数
⑶一般的,当事件E为必然事件时,P(E)=1;当事件E为不可能事件时,P(E)=0;当事件E为不确定事件时,P(E)在0和1之间。
⑷随机事件概率的计算方法:列举法,借助几何图形确定概率。
⑸学会用列表分析法和画树状图的方法分析概率。
第十四章:整式的乘法
48、同底数幂的乘法和除法:
⑴同底数的幂相乘,底数不变,指数相加。
⑵同底数的幂相除,底数不变,指数相减。
49、注意:
⑴同底数幂除法运算法则应注意底数不能为0
⑵同底数幂的乘除法混合运算要注意运算顺序
⑶底数互为相反数时,化为同底数进行运算
⑷根据指数的奇偶性确定符号的正负
⑸指数是多项式时,在指数运算时应加上括号
50、任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
51、零指数幂的性质:a0=1(a≠0)
⑴零的零次幂无意义。
⑵零的负整数指数幂无意义
52、科学计数法:把一个小于1和大于10的数写成:±a×10n 其中1≤a<10
(小于1时n为负整数,大于10时,n是正整数)
53、积的乘方和幂的乘方
⑴积的乘方等于各因数乘方的积
⑵幂的乘方:底数不变,指数相乘。
54、单项式与单项式相乘,把它们的系数相乘,字母部分的同底数幂分别相乘对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
55、单项式与多项式相乘,先把单项式分别乘多项式的各项,再把所得的积相加。
56、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
第十五章:平面图形的认识
57、等腰三角形:
⑴性质定理:等边对等角(两底角相等)
①推论1:等腰三角形顶角的平分线平分底边且垂直底边。(三线合一)
②推论2:等边三角形各角相等,均为600
⑵判定定理:两底角相等的三角形是等腰三角形
58、三角形的三边关系,在同一个三角形中:
⑴三角形两边之和大于第三边,两边之差小于第三边
⑵大角对大边,小角对小边,等角对等边。
59、三角形的三线:角平分线、中线、高。三角形的中线把三角形的面积分成相等的两部分
60、三角形的内角和、外角和(略)
61、多边形:
⑴概念:平面内,不在同一条直线上的几条线段首尾顺次相接,所得到的封闭图形叫多边形
⑵连接多边形的不相邻的两个顶点的线段叫多边形的对角线。
⑶多边形内角和与外角和
①多边形内角和等于(n-2)1800,边数增加,内角和增加,每增加一条,内角和增加1800,反之亦然。
②公式(n-2)1800只适用于凸多边形,对凹多边形不使用。
⑷多边形一个内角的一边与另一边的反向延长线所成的角,叫做多边形的外角。任何多边形的外角和恒为3600,与边数无关。
⑸我们把边数相等、各内角也相等的多边形叫做正多边形。
①正多边形必须同时满足两个条件,一是各边相等,二是各内角相等,两者缺一不可
②正多边形各内角相等,故各个内角为
③正多边形的各个外角也相等,且每个外角为3600/n
⑹用多边形拼接平面图案,只有各个顶点处所有多边形相邻的内角恰好能拼成一个周角,才能做到既无空隙又无重叠,像这样拼接成的平面图案,叫做多边形的密铺。
①多边形密铺的必要条件:公共顶点处各个角之和必须时3600。
②单独密铺平面的正多边形只有三种,即正三角形,正方形,正六边形,其他的正多边形不能密铺。
③形状和大小都相同的三角形及四边形也能单独密铺平面。
④用两种或两种以上的正多边形是否能密铺平面,需要根据条件判断。
62、圆的定义:到定点的距离等于定长的点的集合。
①圆的内部可以看作是到圆心的距离小于半径的点的集合。
②圆的外部可以看作是到圆心的距离大于半径的点的集合。
63、弦:连接圆上任意两点的半径
半圆:圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆。
优弧:大于半圆的弧。
劣弧:小于半圆的弧。
弓形:由弦及所对的弧组成的图形。
等圆:能够重合的两个圆。
等弧:在同圆和等圆中,能够重合的两弧。
64、点到圆的位置关系是由这个点到圆心的距离与半径的数量关系决定的。
d<r时P在圆内;d=r时P在圆上;d>r时在圆外。
四、初一数学下册旋转解题方法?
关于这个问题,旋转解题方法是指在解决数学问题时,通过旋转或转换的方法,将问题转化为更简单或更易解的形式。下面是一些常见的旋转解题方法:
1. 图形旋转:对于一些几何问题,可以通过旋转图形来改变问题的形式。例如,对于一个与x轴平行的正方形,可以将它旋转45度,使其变为一个菱形,从而更容易计算面积或边长。
2. 坐标旋转:对于直角坐标系中的问题,可以通过坐标旋转来简化问题。例如,对于一个在第一象限内的点,可以将坐标系绕原点逆时针旋转45度,使得该点的坐标变为正实数,从而更方便计算。
3. 数轴旋转:对于一些数轴上的问题,可以通过旋转数轴来改变问题的形式。例如,对于一个求解绝对值的问题,可以将数轴旋转180度,使得问题转化为求解一般的数值范围。
4. 方程旋转:对于一些代数方程的问题,可以通过旋转方程来改变问题的形式。例如,对于一个二次方程,可以通过换元变量或配方法,将其转化为一个更易解的形式。
5. 函数旋转:对于一些函数的问题,可以通过旋转函数曲线来改变问题的形式。例如,对于一个非线性函数的最值问题,可以通过旋转函数曲线,使其变为一个更易求解的形式。
需要注意的是,旋转解题方法并不是适用于所有数学问题,而是根据具体问题的特点和求解思路来确定是否使用。在使用旋转解题方法时,需要灵活运用数学知识和技巧,以便更好地解决问题。
五、人教版初一数学下册书答案?
去人民教育出版社的网上看看 http://www.pep.com.cn/ 先点初中数学 然后左栏窗口有教师用书 答案都有
六、初一数学下册重点难点?
相交线与平行线
重点:理解“三线八角”;平行线的性质和判定;
难点:准确理解判断两条直线平行的条件和特征;理解性质和判定的关系
易错点:不能正确的理解性质和条件的关系
实数
重点:平方根、立方根的概念、实数的定义;区分有理数和无理数
难点:理解无理数是无限不循环小数;实数运算的某些技巧掌握
易错点:无理数的表现形式;理解平方根有两个
平面直角坐标系
重点:平面直角坐标系的概念;点的坐标表示;点的坐标变换
难点:点的坐标变换(平移、对称)
易错点:坐标的表示;坐标变换
二元一次方程组
重点:用代入法,加减法解二元一次方程组
难点:二元一次方程组的应用题;二元一次方程组和一次函数图像的关系
易错点:二元一次方程组的解法及应用题
不等式与不等式组
重点:不等式的基本性质;一元一次不等式(组)的解及解法法
难点:解一元一次不等式组取解集;一元一次不等式(组)处理应用问题;求字母取值范围的问题
易错点:一元一次不等式组解集的确定;解集端点值的包含问题
数据的收集、整理和描述
重点:了解随机抽样、个体、总体、样本、样本容量、频率、频数等概念
难点:理解频数、频率的概念,
易错点:样本、样本容量的区分;全面调查和抽样调查的区分
七、初一数学下册有几个单元?
回答:人教版七年级下册有六个单元,第一单元为平行线与相交线,本单元对于七年级学生来说是难点,第二单元实数,第三单元平面直角坐标系,第四单元为二元一次方程组,第五单元为一元一次不能式和一元一次不等式组,第六单元是统计初步。
八、怎样学好初一下册数学?
学习初一下册数学需要认真负责,坚持不懈。
首先,熟悉数学基础知识,重点学习关键知识点;
其次,多练习,不断练习,及时总结;
最后,多积极参与课堂活动,及时反馈问题,加深对知识的理解。只有认真学习,才能掌握数学知识,提高成绩。
九、初一下册数学有几章?
1.相交线与平行线
2.平面直角坐标系
3.三角形
4.二元一次方程组
5.不等式与不等式组
6.数据的收集,整理与描述
十、初一下册数学书答案?
1、先求出玻璃器皿的体积,再和11.76比较。
2、一,三,用高级名数乘进率。
二,四用低级名数除于进率。
3、先求出心愿墙的体积,再求出正方体的体积,再相除。
注意单位间的换算。
4、先求出石凳的总体积(是算一个凳面和两个凳脚的体积),再乘50。
5、一,三,用高级名数乘进率。
二,四用低级名数除于进率。
6、先求出围墙的体积,再乘525。
注意单位间的换算。
7、先用(长+宽+高)*4求出长方体的棱长总和,再除于12得出正方体的棱长,这样就可以用体积公式求出长方体和正方体的体积作比较。
希望对你有帮助。
不明白时再问我。