一、企业数据分类的标准?
1、定类数据——表现为类别,但不区分顺序,是由定类尺度计量形成的。
2、定序数据——表现为类别,但有顺序,是由定序尺度计量形成的。
3、定距数据——表现为数值,可进行加、减运算,是由定距尺度计量形成的。
4、定比数据——表现为数值,可进行加、减、乘、除运算,是由定比尺度计量形成的。
二、怎样获得企业数据?
获取企业数据需要一下步骤:
1.客户识别/接触体系不完善的,需尽快建立公司统一的客户体系(如会员系统)。
2.要有明确的全局数据体系作为指导,相应建立采集和整合的制度化机制,使得各环节的业务人员对相关工作从自发变为自觉。
3.要把外部大数据/应用反馈数据也纳入到数据体系中,统一规划构建相关的收集机制和融合方法。
4.在此过程中不要摊子过大,结合情况分步骤实施,优先考虑最重要/最容易采集的数据资源。
三、企业数据怎么算?
企业数据泛指所有与企业经营相关的信息、资料,包括公司概况、产品信息、经营数据、研究成果等,其中不乏涉及商业机密。
通常所说的企业数据是指狭义的企业数据,一般只包含公司概况介绍,包括公司经营范围、联系方式、企业规模等,通常是公开的数据。企业数据的获取渠道分为集中式和分布式。
很显然,企业数据没有固定的算法。
四、企业对外数据哪里来的?
1、数据的三大来源:
(1)大量人群产生的海量数据。
(2)企业应用产生的数据。
(3)巨量机器产生的数据。统计数据主要来自两个渠道:一是数据的间接来源;一是数据的直接来源。
统计数据的直接来源:
1、普查:专门组织的、以获取一定时点或时期内现象总量资料为目的的一次性全面调查。
2、随机抽样调查:基于随机性原则,从调查现象总体中抽取部分样本,以样本调查结果推断总体情况的调查方法。
3、非随机抽样调查:抽样时不是遵循随机原则,而是按照研究人员的主观经验或其它条件来抽取样本的一种抽样方法。
五、使用数据化运营的企业?
企业的信息化管理是一条漫长而崎岖的道理,当然这里也不乏创新的火花。关于信息化建设随企业所处环境、行业的不同而不同。那作为一个成熟的企业,在如今这个大数据浪潮下,对于未来的信息化有何建设性的想法呢?这里分享某医药集团的数据化管理实践。
该医药集团的主营业务有药品、生物制品、医疗器械以及医药的健康产品等。自20年前开始建设信息化,一路发展下来,现有大大小小各种业务系统几十个,但是核心的系统无非是业务和财务这两个部分。
但是,随着业务规模的不断扩大,公司规模业务部门业态越来越复杂,业务复杂性大大提升,企业更多地开始关注流程,流程的数据也开始逐渐变成企业运营的一个核心部分。
六、企业并购重组需要的数据?
公司并购重组需要准备的材料如下:
1、企业兼并的可行性报告;
2、被兼并企业职工代表大会的局面意见。兼并方属股份制公司的,应有董事会决议;
3、由注册会计师事务所有资格的中介机构出具或认证的被兼并企业的基本情况以及财产债权债务等方面的材料;
4、债权银行认可企业兼并的书面意见;
5、兼并企业与被兼并企业的兼并协议;
6、能代表兼并企业和被兼并企业出资者的机构部门或当地政府的意见及申请报告。
七、企业如何实现数据共享?
企业如何打破数据孤岛,实现数据共享?
先给明思路:想要打破企业内部的数据孤岛,就要建立起企业统一的数据决策分析平台
通俗点说,数据决策分析平台能打通、收集企业内部各系统中的数据,然后在统一的数据平台框架下实现对数据的挖掘和分析,最后通过可视化的手段进行数据展示,从而解决数据孤岛。
数据决策平台定位
- 满足企业运营的基础能力建设
- 建立起企业信息化基础
- 加快业务运转效率
数据分析决策平台如何建立?
完整方案可参考:数据决策分析平台建设方案,不过多赘述,以下为部分节选
- 平台建设目标
- 数据平台三步走建设规划
- 搭建企业数据分析指标体系
- .....
案例分享 | 南孚电池集团数据平台建设
南孚电池集团通过帆软报表工具FineReport建立了南孚数据报表平台,统一了集团数据标准,建立集团统一的数据仓,自动生成各部门管理报表,不仅减少了反复取数、洗数等低价值工作的人工参与,还加快了企业内部的数据响应速度,及时为中高层的决策和业务人员的数据分析提供支持。
案例细节展示
使用帆软作为统一数据展示平台,通过在线化数据平台搭建,数据自动化流转设置,四大会计报表出具时间从原来每月8日提到3日前,大大节省财务人员的月结宝贵时间。
通过移动端功能,南孚集团实现销售收入快报的展示,让营销和财务部门人员能够对销售数据做到“心中时刻有数”,公司管理层也能通过移动端随时随地了解不同产品,不同渠道的销售状况,并做出快速决策,提升决策效率,实现企业核心经营数据透明。
利用FR打通各业务系统数据的功能,业务部门抛弃了以往依靠手工分别对ERP和物流系统进行数据输出的方式,依据现有库存报表的逻辑进行需求分析,每月定时维护库存信息表,年总销售数量,安全库存参考填报等重要指标信息,最终实现用户仅需输入特定筛选条件,即可进行报表展示的效果,大大提升业务部门的工作效率。
需要强调说明的是,FineReport不仅仅只是一款报表工具,它更是企业级数据可视化管理应用软件,能够帮助企业将经营过程中的复杂数据和流程进行梳理与整合,形成一套报表系统。
目的是在于让已有繁琐的数据处理方式更加方便有序、使混乱的业务流程管理规范统一,这对于需要信息化/数字化转型/解决数据孤岛问题的企业来说是必备软件。
小结:
总的来说,想让企业数据孤岛问题得到有效改善,就必须建立好统一的数据决策分析平台。
从而实现自动获取ERP,MES等平台财务,销售,库存,生产等基础数据,清洗并组建底层数据仓库,最终以简洁明了的方式展示所需报表信息,真正做到“数据统一化”“数据可视化”。
需要注意的是,在建设过程中,必须要注意数据平台的性能,大数据分析平台的性能一定要保证高效,保证在数据量激增的情况下可以支撑海量数据分析,否则将会前功尽弃。
篇幅有限,如果正处在数据决策分析平台0-1建设的朋友,可参考以下方案,其中包含生产、营销、财务、库存四个模块方案介绍,并附带成功客户案例供参考↓↓
企业大数据决策分析平台建设方案八、哪里可以看到企业并购的数据?
国内数据库:wind,同花顺,清科,投中,启信宝,企查查
国外数据库:deal logic , BVD zephr, crunchbase, pitchbook
九、传统企业数据有什么?
企业数据对企业具有很高的价值,包括财务数据、业务数据、员工个人数据等,企业花费了大量时间和金钱来保证数据在各方面的安全和质量。然而,所谓的企业数据从当前状态变得日渐陈旧,虽然以某种形式进行存储,但是难以进行分析和检索。
这些数据有着重大的意义,企业需要有一个专门的地方来分析它,以挖掘各种潜在的商机,这就是数据湖产生的原因。
企业数据主要分为3大类
1、主数据(master data),指的是详细描述企业内部主要实体的数据。通过观察主数据可以了解企业涉及的业务。这些数据通常由不同部门管理和掌握。其他类别的数据,需要利用主数据来产生价值。
2、事务数据(transaction data),指的是各种应用程序(内部或外部)在处理企业内的各种业务流程时产生的数据。事务数据也包括人员相关的数据,虽然某些时候并不属于业务数据,但这部分数据也非常重要。分析这部分数据,可以帮助企业优化业务这些数据也依赖于主数据,并经常引用主数据。
3、分析数据(analytic data),实际上指的是来源于前两类数据的数据。这部分数据是对企业中的各种实体(主数据)的深入分析,同时结合事务数据,为企业提供积极的建议,经过必要的调研之后,这些建议可以被企业采纳。
十、企业数据采集分析框架?
Apache Flume。
Flume 是 Apache 旗下的一款开源、高可靠、高扩展、容易管理、支持客户扩展的数据采集系统。 Flume 使用 JRuby 来构建,所以依赖 Java 运行环境。
Flume 最初是由 Cloudera 的工程师设计,用于合并日志数据的系统,后来逐渐发展用于处理流数据事件。
Flume 设计成一个分布式的管道架构,可以看作在数据源和目的地之间有一个 Agent 的网络,支持数据路由。
每一个 agent 都由 Source,Channel 和 Sink 组成。
Source。