返回首页

中国量子通讯产业的现状

71 2023-07-27 23:50 admin

与传统的通信技术相比,量子通信技术的特点及优势体现在具有较高时效性、具有较强的抗干扰性、具有较好的保密性、所需信噪比低等。

政策方面,我国出台多项政策推动量子通信发展,2021年开始实行的“十四五”规划提出,要使全社会研发经费投入年均增长7%以上,并把量子技术与人工智能和半导体一起列为重点研发对象。

技术方面,中国量子通信专利数超3000项,领先美国。随着国家逐渐完善量子科技领域的顶层设计,加强技术支持,我国有望成为全球量子信息技术研究和应用的主要推动者。

量子通信较传统通信优势明显

与传统的通信技术相比,量子通信技术的特点及优势体现在具有较高时效性、具有较强的抗干扰性、具有较好的保密性、所需信噪比低等。量子通信线路时延几乎为零,信息传递速度快,过程无障碍;量子通信中嫌陪棚的信息传输与通信双方之间的传播媒介无关,不受空间环境的影响,具有完好的抗干扰芹则性能;

由于量子不可克隆,成为量子密钥的基础,量子密码安全性很高,一般不能被破译;相比于传统的通信手段,同等条件下量子通信技术获得可靠通信所需的信噪比低30-40dB。

“十四五”规划推动量子通信发展

我国出台多项政策推动量子通信发展,2021年开始实行的“十四五”规划提出,要使全社会研发经费投入年均增长7%以上,并把量子技术与人工智能和半导体一起列为重点研发对象。

在十四五建设时期要加强关键数字技术创新应用,加快布局量子计算、量子通信等前沿技术,并在量子信息等前沿科技和产业变革领域,组织实施未来产业孵化与加速计划,谋划布局未来产业。我国将构建完整的天地一体广域量子通信网络技术体系,率先推动量子通信技术在金融、政务和能源等领域广泛应用。

2021年3月15-3月21日通信细分板块中只有量子通信上涨3.1%,其他如移动互联、卫星通信导航、区块链、云计算、物联网均下跌。可知通信板块表现下跌,但是量子通信表现最佳,可知量子通信发展势头较好。

中国量子通信专利数超3000项,领先美国

2013年“斯诺登事件”发生后,我国大力研发量子通信和密钥技术,2016年,我国成功发射了世界上第一颗量子科学实验卫星“墨子号”,并获得了千公里级星地量子密钥分发、量子隐形传态以及纠缠分发等多项具有国际领先水平的科学成果。

2020年美国政府提出了打造量子互联网的计划;中国也在切实建设量子通信体系,中国科学技术大学2021年1月宣布成功组建跨越4600公里的天地一体化量子通信网络。

据日本信息分析机构VALUENEX,在光量子交换机等硬件相关专利方面,中国优势明显:华为公司拥有100项专利,居世界第二位;北京邮电大学拥有84项专利,排在第四位。

在软件方面,中国也拥有很强的实力,中国建设了连接北京和上海的量子通信网,积累了设备开发和应用的知识经验。中国量子通信专利数超3000项,遥遥领先于美国。

量子通信朝着量子互联网发展

量乱氏子通信技术是未来保障信息安全的重要手段,是国家重点支持发展的行业。云计算、移动互联网、物联网、大数据等新技术、新应用和新模式的出现,对信息安全提出了新的要求,信息安全牵涉到国家安全和社会稳定,我国已将信息安全提升为国家安全战略。

近年来,我国加快在量子科技领域的发展,相关的科研经费投入,专利申请布局和应用探索等方面都具备较好的实践基础和发展条件。随着国家逐渐完善量子科技领域的顶层设计,我国的量子科技行业或将快速发展,成为全球量子信息技术研究和应用的主要推动者。

—— 更多数据请参考前瞻产业研究院发布的《中国量子通信行业市场前瞻与投资策略分析报告》

量子通讯系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。

1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未知量子态传送到另一个地方,把另一个子制备到该量子态上,而原来的粒子仍留在原处。其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品。该过程中传送的仅仅是原物的量子态,而不是原物本身。发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。

在这个方案中,纠缠态的非定域性起着至关重要的作用。量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。在量子力学中能够以这样的方式制备两个粒子态,在它们之间的关联不能被经典地解释,这样的态称为纠缠态,量子纠缠指的是两个或多个量子系统之间的非定域非经典的关联。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。1997年,在奥地利留扰举学的中国青年学者潘建伟与荷兰学者伏塌波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。为了进行远距离的量子态隐形传输,往往需要事先让相距遥远的两地共同拥有最大量子纠缠态。但是,由于存在各种不可避免的环境噪声,量子纠缠态的品质会随着传送距离的增加而变得越来越差。因此,如何提纯高品质的量子纠缠态是量子通信研究中的重要课题。

国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的。潘建伟等人发现了利用现有技术在实验上是可行的量子纠缠态纯化的理论方案,原则上解决了在远距离量子通信中的根本问题。这项研究成果受到国际科学界的高度评价,被称为“远距离量子通信研究的一个飞跃”。

1993年,C.H.Bennett提出了量子通讯的概念;同年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传送的方案:将某一个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍停留在原处。其基本思想是:将原物的信息分成经典信息与量子信息两部分缓厅碧,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物质进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得了这两种信息后,就可以制备出原物量子态的完全复制品。该过程中传送的仅仅是原物质的量子态,而不是原物本身。发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物质的量子态上。在这个方案中,纠缠态的非定域性起着极其重要的作用。量子隐形传态不仅在物理学领域对人们认识和揭示自然界的神秘规律具有重要意义,而且能用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现了原则上不可破译的量子保密通信。

1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现未知量子态的远程传输。这是国际上首次在实验上成功地把一个量子态从甲地的光子传送到乙地的光子上。实验里传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。

2012年,中国科学家潘建伟等人在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定技术基础。国际权威学术期刊《自然》杂志8月9日重点介绍了该成果。“在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将可以达到1000公里以上,基本上解决量子通讯卫星的远距离信息传输问题。”研究组成员彭承志介绍说,量子通讯卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。8月9日,国际权威学术期刊《自然》杂志重点介绍了这一成果,代表其获得了国际学术界的普遍认可。《自然》杂志称其“有望成为远距离量子通信的里程碑”、“通向全球化量子网络”,欧洲物理学会网站、美国《科学新闻》杂志等也进行了专题报道。

据《新科学家》杂志等媒体综合报道,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。这一突破表明在太空和地球之间可以构建安全的量子通道来传输信息,用于全球通信。此研究成果发表在《新物理学杂志》(New Journal of Physics)上。

意大利帕多瓦大学的保罗·维罗来斯和恺莎尔·巴伯利领导此研究小组,成功地利用意大利名为马泰拉(Matera)激光测距天文台的1.5米望远镜向地球上空1500公里处的日本阿吉沙(Ajisai)人造卫星发射出光子并让此卫星将这些光子反弹回到了原始出发地。这标志着无法偷听的量子编码通信可望通过人造卫星来实现。此消息将会大受全球通信公司和银行的欢迎。

据某些说法「在2007年6月,一个由奥地利、英国、德国研究人员组成的小组在量子通讯研究中通过创下了 通信距离达144公里的最远纪录」,但事实是1997年奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证,2004年该小组利用多瑙河底光纤信道,成功地将量子态隐形传输距离提高到600米。最终在2012年利用西班牙加纳利群岛的良好环境在大气中传输143公里。才打破了中国此前先后于北京和青海湖创下的16公里与97公里大气内传输世界纪录。

而要达到更远的距离很难,因为大气容易干扰光子脆弱的量子状态。而巴伯利小组想出了解决办法,通过人造卫星来发送光子。由于大气随高度的增加而日趋稀薄,在卫星上旅行数千公里只相当于在地面上旅行8公里。

由于巨大的实用价值及技术的可行性已经得到证明,中国已在多个场合宣布将于2015年发射人类首颗量子通讯卫星。同时将与奥地利合作进行北京至维也纳的人类首次量子卫星通讯试验,并试图由此构建两地之间的量子通讯网络。

另一方面,早前为证实地面能观测到从轨道卫星上发送回来的光子,奥地利研究小组从意大利马泰拉(Matera)激光测距天文台的望远镜向阿吉沙(Ajisai)人造卫星发射出一束普通的激光。阿吉沙(Ajisai)人造卫星由318面镜片组成,从精确的镜片上反弹回来的单批光子成功地回到了此天文台。

参与此项研究的奥地利维也纳的量子光学和量子信息研究所著名量子物理学家安顿·宰林格(Anton Zeilinger)认为太空至地球的量子通信是一项可行技术。宰林格正在打造一个人造卫星,用于产生纠缠光子,接收信息并对信息编码,之后再将编码的信息反射回来,以建立全球量子通讯网络。

量子通讯是利用了光子等粒子的量子纠缠原理。量子通讯学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。

量子通讯是经典信息论和量子力学相结合的一门新兴交叉学科,与成熟的通信技术相比,量子通讯具有巨大的优越性,具有保密性强、大容量、远距离传输等特点。量子通讯不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会、国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通讯的研究,研究项目多达12个。日本邮政省把量子通讯作为21世纪的战略项目。

中国科学技术大学合肥微尺度物质科学国家实验室的潘建伟教授及其同事,利用冷原子量子存储技术在国际上首次实现了具有存储和读出功能的纠缠交换,建立了由300米光纤连接的两个冷原子系综之间的量子纠缠。这种冷原子系综之间的量子纠缠可以被读出并转化为光子纠缠以进行进一步的传输和量子操作。该实验成果完美地实现了长程量子通信中亟需的“量子中继器”,向未来广域量子通信网络的最终实现迈出了坚实的一步。

类比于传统的电子通讯中为了补偿通讯号衰减而进行整形和放大的电子中继器,奥地利科学家在理论上提出,可以通过量子存储技术和量子纠缠交换和纯化技术的结合来实现量子中继器,从而最终实现大规模的长程量子通讯。量子存储的实验实现却一直存在着很大的困难。为了解决量子存储问题,国际上人们做了大量的研究工作。比如段路明及其奥地利、美国的合作者就曾于2001年提出了基于原子系综的另一类量子中继器方案。由于这一方案具有易于实验实现的优点,受到了学术界的广泛重视。然而,随后的研究表明,由于这一类量子中继器方案存在着诸如纠缠态对信道长度抖动过于敏感、误码率随信道长度增长过快等严重问题,无法被用于实际的长程量子通讯中。

为了解决上述困难,潘建伟、陈增兵和赵博等在理论上提出了具有存储功能、并且对信道长度抖动不敏感、误码率低的高效率量子中继器方案。同时,潘建伟研究小组与德国、奥地利的科学家经过多年的合作研究,在逐步实现了光子—原子纠缠、光子比特到原子比特的量子隐形传态等重要阶段性成果的基础上,最终实验实现了完整的量子中继器基本单元。由于量子中继器实验实现在量子信息研究中的重要意义。

作为新一代通信技术,量子通信基于量子信息传输的高效和绝对安全性,国际科研竞争中的焦点领域之一。合肥城域量子通信试验示范网于2010年7月启动建设,投入经费6000多万元。经过中国科学技术大学和安徽量子通信技术有限公司科研人员历时1年多的努力,项目建成后试运行,各项功能、指标均达到设计要求。该项目2012年3月29日通过安徽省科技厅组织的专家组验收,30日正式投入使用。

具有46个节点的量子通信网覆盖合肥市主城区,使用光纤约1700公里,通过6个接入交换和集控站,连接40组“量子电话”用户和16组“量子视频”用户。主要用户为对信息安全要求较高的政府机关、金融机构、医疗机构、军工企业及科研院所,如合肥市公安局、合肥市应急指挥中心、中国科技大学、合肥第三人民医院及部分银行网点等。

合肥量子通信网的建成使用,标志着我国继量子信息基础研究跻身全球一流水平后,在量子信息先期产业化竞争中也迈出了重要一步。我国北京、济南、乌鲁木齐等城市的城域量子通信网也在建设之中,未来这些城市将通过量子卫星等方式联接,形成我国的广域量子通信体系。

12月19日,中国科学院在北京召开了科技服务国民经济主战场座谈会,中科院院长白春礼、上海市市长杨雄、山东省省长郭树清、陕西省省长娄勤俭,以及行业企业代表和专家出席了会议。会议围绕进一步贯彻落实“率先行动”计划,进一步深化院省合作、院企合作,以科技创新服务经济社会发展展开深入的座谈交流。

会议最后举行了系列合作协议签约仪式,其中由中国科学院国有资产经营有限公司(国科控股)牵头,联合中国科学技术大学、科大国盾量子技术股份有限公司、阿里巴巴(中国)有限公司、中国铁路网络有限公司、中兴通讯股份有限公司、北方信息技术研究所等作为首批发起单位代表,签署战略合作框架协议,共同发起组建“中国量子通信产业联盟”。

该联盟将广泛组织相关行业的代表性企业力量,旨在通过整合在技术研发、核心制造、基础设施、应用服务、大数据、互联网以及科技金融等领域的优势资源,促进创新链、产业链与资本链的联动,做好产业顶层设计与战略规划,推动标准规范的建立健全,发挥产业发展合力,构筑可持续发展的量子通信产业生态系统,打造世界领先的量子通信产业。

近年来,随着以科大国盾量子系列产品为代表的量子通信基础设备日臻成熟,一批面向应用平台开发并致力于探索商业化推广量子安全通信服务的企业不断涌现,神州量子、苏州科达、中经量通、九州量子、基点量子等就是这样的开拓者。

中国是世界上率先把量子通信产业化的国家,据了解,量子通信不仅可以用于军事、国防等领域的国家级保密通信,还可以用于涉及秘密数据、企业机密、包括政府金融、电信、保险、证券、银行、工商、财政等领域和部门,而如果技术又正好成熟,未来应用市场前景将异常广阔。

“在我国量子通信技术取得突破,量子通信产业爆发的关键时期,协作合作将创造更大价值。 ”这是在 10月 18日举行的 2016首届量子信息产业发展高峰论坛上,与会的政府人士、专家和企业界代表传递的信息。

论坛中,工信部信息通信发展司司长闻库表示,将大力支持应用试点和推广,推动量子信息技术在网络信息安全、电子政务、金融、电力等重点领域的试点和应用,以市场应用推动量子通信产业的发展。通过国家转向和产业资金,社会资本多渠道的支持和引导,着力促进技术研发设备生产网络应用等产业链上下游企业的协同不断推进量子信息技术和产业发展。

郑韶辉认为,科学家要展开技术攻关,市场也要跟得上,运用市场化的机制,可以展开一些并购。如果用三年的时间,使设备成本下降到现在的十分之一,就能为大规模地应用奠定基础。发展的三个阶段都需要多家公司的协作和参与,最终将量子通信产品普及到每个消费者手中。