大数据哪里好就业?
大数据就业岗位主要围绕数据价值化来展开,涉及到数据采集、数据整理、数据存储、数据分析、数据安全、数据应用等诸多方面。
大数据开发相关的岗位很多,比较热门的包括:
1、大数据开发工程师
主要负责数据模型的ETL开发、数据平台建设;面向业务的数据提取、分析、报表、挖掘等系统设计和开发工作。
岗位要求手渣:
精通常用的数据结构和算法,理解面向对象设计的基本原则,熟悉常用的设计模式;
掌握Hadoop生态体系框架,包括Hadoop、Hive、Spark、Storm、Flink、ElasticSearch、HBase等;
2、大数据运维工程师
主要负责数据平台的集群管理,机器优化,集群监控等;对现有集群的优化和性能调优,满足不断增长的业务需求等。
岗位要求:
熟悉主流开源数据组件,包括但不限于HADOOP、Hive、HBase、ZK、Spark、Flink、Flume、ElasticSearch and etc;深入理解Hadoop各组件的原理和实现;熟悉分布式原理、分布式系统设计等。
3、大数据架构师
主要负责大数据基础框架的整体架构设计,结合公司实际业务情况进行技术选型;负责数据存毕嫌悄储和计算平台的整体评估、设计以者雹及核心功能模块的开发等。
岗位要求:
熟悉常用的数据结构和算法;具备丰富的开发经验,了解主流的大数据技术框架组件,包括但不限于Hadoop、Spark、Storm、Flink等。
4、大数据分析师
大数据分析方向的岗位,则主要以数据分析挖掘为主,通常需要负责常规业务数据分析需求开发,用户画像构建,推荐算法实现等。
岗位要求:
熟悉数据仓库理论、数据挖掘理论基础,熟悉常用机器学习算法(如逻辑回归、神经网络、决策树、贝叶斯等);对Hadoop和Spark生态当中的主流技术组件,有相应程度的了解。
对于基础人才-数据分析师,北京数据分析师平均工资:¥ 17780/月,取自 10319 份样本。
对于大数据开发工程师,北京大数据开发平均工资:30230/月。
对于Hadoop开发工程师,北京hadoop平均工资:24280/月。
对于数据挖掘工程师,北京数据挖掘工程师平均工资:¥ 29810/月
对于算法工程师,北京算法工程师平均工资:¥ 30530/月
所以可以去一线城市发展
建议可以去北京、上老侍海、广州、深圳、杭州、南京、武汉、成都、长沙等一线及二郑模线城市发展,现在不仅一线侍丛吵城市对数据科学人才需求大,二三线城市的需求量也在增多。
大数据职业发展主要分为3个方向:凳贺州
1、大数据开发方向:所涉及的职业岗位为:大数拍橘据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析枣蔽和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向;对应岗位:大数据运维工程师。
大数据这个方向的入门职业有哪些
大数据行业就业方向和职业:三大方向 ,羡腊碧十大职位兄举
三大方向:
大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
十大职位:
一、ETL研发;
二、Hadoop开发;
三、可视化(前端展现)工具开发;
四、信息架构开发;
五、数据仓库研究;
六、OLAP开发;
七、数据科学研究;
八、数据预测(数据挖掘)分析;
九、企业数局渣据管理;
十、数据安全研究。
当下,大备谈数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、唯滚升大数据分析师。对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事。大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。
大数据就业前景:
在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K以上,工作1年月薪可达到12K以上,资深的hadoop人才年薪可达到30万―50万。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大指老数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据分析师
基于各种分析手段,利用大数据技术对大数据进行科学分析、挖掘、展现并用于决策支持。
数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。
算法工程师
数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
想要了解更多关于大数据这个方向的入门职业的信息,可以到CDA认证机构咨询一下,CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。
大数据主要的三大就业方向:
大数据系统研发类人才;
大数据应用开发类人才;
大数据分析类人才。
大数据十大就业职位:
一、ETL研发
随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop的核心是HDFS和MapReduce.HDFS提供了海量数据的存储,MapReduce提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。
三、可视化(前端展现)工具开发
海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数 据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数历渗据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作 将会直接针对链或数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。
总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗 和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上肢唤脊万的人。担当数据管家的人,需要保证 市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。
大数据者戚皮可以做的岗位有很多,新手入门可以从实习岗位或者基层岗位做首差起
1.Hadoop开发工程师仔塌
2.数据挖掘工程师
3.大数据科学家
4.首席数据官(CDO)
5.ETL研发
6.大数据信息架构开发
7.数据仓库研究
8.OLAP开发
9.大数据安全研究
任何行业都有大数据,譬如电信行业,互联网行竖游业,电力,交通,教育,医疗等等。
随着业务的增长和新业务的更新,并且厅羡数据的来源越来越多,数据量的增加和数据管扮纤拍理的需求,都促使各个行业有大数据分析的需要。